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Abstract

We present a method for measuring changes of enthalpy to discriminate the contribution due to the latent heat from that due

to the temperature dependence of the speci®c heat near the transition point. The same conduction calorimeter, whose sensor is

formed by two identical heat ¯uxmeters, determines the speci®c heat and the heat ¯ux exchanged by the sample when its

temperature changes at constant rates as low as 0.1 K hÿ1. The method is applied to the KMnF3 crystal, which undergoes a

®rst-order transition close to a tricritical point at 186 K, and the doped crystal KMn0.96Ca0.04F3, whose transition becomes

second-order. The latent heat of pure KMnF3 is evaluated to be 0.129 � 0.002 J gÿ1. Although the thermal analysis signal of

KMn0.96Ca0.04F3 crystal presents a peak, it is entirely due to the contribution of the speci®c heat, which indicates that the

transition is second-order. # 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The crystal KMnF3 presents [1] a ferroelastic phase

transition from the cubic perovskite structure to a

tetragonal structure at 186 K. The order parameter

is related to the angle � of the MnF6 octahedral

rotation around the [001] axis [2].

According to Landau classical predictions, this

transition should be second-order as with SrTiO3,

but experimental results suggest a ®rst-order character

which might be due to anisotropic critical ¯uctuations

[3], although its latent heat has not been measured.

Several authors [4±6] also suggest that this phase

transition is close to a tricritical point. This has been

con®rmed by Stokka et al. [7] and Stokka and Fos-

sheim [8], who measured the in¯uence of the uniaxial

stress on the thermal hysteresis of the transition

temperature and estimated that this tricritical point

is obtained when an uniaxial stress of about 0.25 kbar

is applied along [100] direction.

It has been also shown that the order of this transi-

tion can be changed by substituting Ca for Mn [9±11].

The stress and doping effects are actually similar: the

Ca�� ions are much bigger than M�� ions, so that

they act by means of the Ca±F bond as a stress along

the <001> directions of the cubic phase [10].

Because both the application of an uniaxial stress

and Ca doping shift the transitions to be second-order,

the KMnxCa1ÿxF3 crystals are very appropriate for

studying the critical behaviour very close to the

tricritical point. To carry out this study it is necessary

to measure accurately the latent heat to distinguish
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whether, not when the transition is ®rst- or second-

order.

The measurement of latent heat very close to the

tricritical point presents two dif®culties: (a) the latent

heat must be very small and (b) the speci®c heat c must

show a great anomaly, for instance, the Landau theory

predicts a divergence of c at the transition temperature.

On the other hand, the methods used for determin-

ing latent heat (differential scanning calorimeter, ther-

mal analysis, etc.) really measure changes of enthalpy.

This change of enthalpy has two contributions: one

due to the speci®c heat variation with the temperature

and another due to the latent heat.

There have been some attempts [12] to evaluate the

®rst contribution from the heat ¯ux signal when using

conventional DTA in the study of samples whose

speci®c heat has different values in each phase. Never-

theless, near a tricritical point the speci®c heat varies

so much that we believe that this attempt is impossible

unless we know separately the speci®c heat and the

heat ¯ux behaviours near the transition temperature.

To make heat ¯ux and speci®c heat data comparable

it is necessary for them to have been obtained under

the same conditions. Conventional devices for mea-

suring latent heat or speci®c heat work at very differ-

ent temperature scanning rates. Thus, both sets of data

are not completely comparable even if they have been

measured using the same sample. Consequently, it is

very dif®cult to measure latent heat very near a

tricritical point with conventional devices.

We have recently built a device and developed a

method which is able to measure absolute values of

speci®c heat and heat ¯ux exchanged by the sample

under weak uniaxial stress [13,14].

The sample is pressed between two identical heat

¯uxmeters which are made from hundreds of thermo-

couples. This system can be also used as a thermal

analysis device with the advantage that, due to the high

number of thermocouples, its sensitivity is so high that

we can use temperature scanning rates as low as

0.1 K hÿ1, which is similar to the rate used for mea-

suring speci®c heat.

The sensor of the calorimeter is formed by two heat

¯uxmeters, two heaters and the sample. The thermal

capacities and thermal resistances of these mediums

have values of the same order of magnitude as the

sample. On the other hand, although the temperature

scanning rate can be very small, we must consider the

existence of a temperature gradient in the sample and

the coexistence of phases during the transition. This

suggests to us the need for a revision of measurement

theory, avoiding any kind of approximation in order to

be able to discriminate the effect of the latent heat

from that due to the temperature dependence of the

thermal capacity.

In this paper, we study theoretically the heat con-

duction equation of a solid with temporary uniform

internal dissipation and which is bounded by two

parallel planes whose temperatures change at the same

constant rate. The equations for the heat that crosses

those surfaces are applied at the boundaries separating

the different mediums forming the calorimeter, and we

obtain the equations that allow us to discriminate the

enthalpy variation due to the latent heat from that due

to the temperature dependence of the speci®c heat.

This technique is applied to pure KMnF3, whose

latent heat is found to be 0.129 � 0.002 J gÿ1 and to

the KMnF3 crystal doped with 4% of Ca. In the case of

the Ca-doped crystal, we demonstrated that, although

the thermal analysis signal presents a peak at the

transition temperature, this peak is entirely due to

the effect of the speci®c heat and, consequently, the

transition is second-order.

2. Heat conduction in a solid with internal source
and whose temperature changes at a constant rate

Let us consider a solid bounded by two parallel

planes (x � 0, x � l) and we assume a linear heat

conduction. The initial temperature distribution

changes at a constant rate v � �@=@t���x; t� � con-

stant. At the initial time (t � 0) a uniform time-

dependent heat dissipation is produced up to time � .

If we consider a great number N of identical time

intervals u, we can approximate the above dissipation

by

!�t; x� �
XN

n�0

!n H�tÿnu�ÿH�tÿ�n� 1�u�� �;

(1)

where Nu � � , H [tÿnu] is the step function and !n is

the power dissipated per unit volume in the interval

nu < t < (n � l)u.

Later, at time t1 > Nu, the solid attains a temperature

distribution which changes at the same constant rate v,
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in such a way that

�1
0 � ��0; t1� � �0

0 � vt1;

�0
0 � ��0; 0�; �1

l � �0
l � vt1: (2)

The initial �0(x) and ®nal �1(x) temperature distri-

bution are, respectively,

�i�x� � vx2

2h
ÿ _qi

0

k
x� �i

0; i � 0; 1; (3)

where h and k are the thermal diffusivity and con-

ductivity of the solid and _q0
0 � _q1

0�0; 0� � _q1
0�0; t1�

are the initial and final heat fluxes through the plane

x � 0.

Between t � 0 and t � t1, the solution of the

Laplace transform of the differential equation of heat

conduction is

T�s; x� � L���t; x�� � A ex�s=h�1=2 � B eÿx�s=h�1=2

�
XN

n�0

!n

�eÿsnuÿeÿs�n�1�u�
�cs2

� v

s2

� �
0�x�
s

; (4)

where � and c are the density and specific heat of the

solid and A and B are constants. From the above

equation we can relate the Laplace transforms of

temperature T0, Tl and the transform of heat fluxes

I0, Il at the boundaries x � 0 and x � l, respectively,

�I0ÿ _q0
0=s��sk�c�ÿ1=2

�Ilÿ _q0
l =s��sk�c�ÿ1=2

" #

� coth�l�s=h�1=2�ÿcosech�l�s=h�1=2�
cosech �l�s=h�1=2�ÿcoth�l�s=h�1=2�

" #

� T0ÿ�0
0=sÿ�ÿ �

:

Tlÿ�0
l =sÿ�ÿ �" #

; (5)

� �
XN

n�0

!n

�eÿsnuÿeÿs�n�1�u�
�cs2

� v

s2
:

Using coth and cosech series and integration by parts,

from Eq. (5) we obtain,

l

k
I0 � �T0ÿTl� � vl2

2hs
� � s�T0 � Tl�ÿ��0

0 � �0
l �

�
ÿ2s�� � � s�T0ÿTl�ÿ��0

0ÿ�0
l �

� �
; (6)

� �
X1
m�0

2l2=h

�2m� 1�2�2 � l2s=h
;

� �
X1
m�0

2l2=h

�2m��2 � l2s=h
:

The Laplace integrals can be expressed asZ 1
0

f �t�eÿst dt �
Z t1

0

f �t�eÿst dt

�
Z 1

t1

f 1eÿst dt; f 1 � f �t � t1�:

Then, from Eq. (6) and considering Eqs. (2) and (3) we

can deduce

l

k

Z t1

0

_q0 eÿst dt �
Z t1

0

��0ÿ�l�eÿst dt

� v

2

l2

h
ÿ4�

� �Z t1

0

eÿst dt

� �
Z t1

0

eÿst d��0 � �l� � �
Z t1

0

eÿst d��0ÿ�l�

ÿ2�

Z Nu

0

X1
n�0

!n

�c
H�tÿnu��

ÿH�tÿ�n� 1�u��eÿst dt: (7)

As the above integrals converge, we consider the

limit s! 0. As �(s � 0) � l2/(4h) and �(s � 0) � l2/

(12h) we obtainZ t1

0

_q0 dt � q0 � k

l

Z t1

0

��0ÿ�l� dt

� �cl
�1

0ÿ�0
0

3
� �

1
lÿ�0

l

6

� �
ÿ l

2

XN

n�0

!nu: (8)

As �1
0ÿ�0

0 � �1
lÿ�0

l � vt1, if we multiply by the

section S of the solid, we deduce

Q0 �
Z tl

0

�0ÿ�l

R
dt � C

2
vt1ÿQ

2
; (9)

where Q0 is the total heat that has crossed the plane

x � 0 between 0 and t1, R and C are the thermal

resistance and thermal capacity of the solid and Q

is the total heat dissipated in the solid.

Similarly from Eq. (5) we deduce that the total

heat Ql which has passed through plane x � l between

t � 0 and t � t1 is

Ql �
Z tl

0

�0ÿ�l

R
dtÿC

2
vt1 � Q

2
: (10)
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We must point out that these equations do not

depend on the time dependence of the dissipation.

Obviously, Eqs. (9) and (10) are ful®lled in simple

situations, for instance, when there is no dissipation in

the solid, then Q � 0 in Eqs. (9) and (10).

3. Measurement of latent heat by means of
fluxmeters

The experimental arrangement of the speci®c heat

measurement was described previously in detail by

Gallardo et al. [13] and is represented in Fig. 1.

The sample is pressed between two identical heat

¯uxmeters which are made from 50 chromel±constan-

tan thermocouples [15] connected in series with the

wires placed in parallel lines. One of the ¯uxmeters is

®xed to a calorimeter block while the other is pressed

by a bellows. The ¯uxmeters which have a cross-

section of 1 cm2, are rigid enough to apply a controlled

uniaxial stress of between 0 and 12 bars on the sample.

Two electrical resistances (heaters) are placed

between each face of the sample and ¯uxmeters.

These resistances can dissipate a uniform heat power

on the sample faces or measure the temperature of the

¯uxmeter junctions near the sample.

An HPE-1328A current source and a HPE-l326

multimeter are used, respectively, to produce and to

measure the power dissipated in the heaters. The e.m.f.

produced by the ¯uxmeters is measured by a Keithley

181 nanovoltmeter with a repetition rate of four

measurements per second. The temperature of the

calorimeter block is measured with a platinum resis-

tance thermometer and a Tinsley resistance bridge. All

the devices are controlled by an HP-75000 data

acquisition system.

To measure the latent heat, we change the tempera-

ture of the calorimeter at a low constant rate

(v � 0.1 K hÿ1) so that in every medium (¯uxmeter,

heater and sample) the initial conditions considered in

Section 2 are present. Due to the symmetry of the

assembly, the high vacuum in the calorimeter and the

small temperature difference between the sample and

the block (which is estimated to be lower than 0.02 K)

we can assume a linear heat conduction in each

medium.

When the temperature of the sample surface in

contact with the heater reaches the transition tempera-

ture the change of phase begins and we assume that the

propagation front of the phase transition coincides

with the planes x � constant and there is no heat

¯ux through the symmetry plane x � 0 of the sample

(Fig. 1).

If the phase transition is completed at a time � and

like the thermal capacity of the block is much higher

than that of the sample, at time t1 > � a new uniform

temperature distribution is reached where the tem-

perature in every medium changes at the same rate

v, thus obtaining the ®nal conditions described in

Section 2.

Now, we consider the following model:

The sample is composed by 2N thin slabs (where N

is large). The width of these slabs is so small that we

assume that the transition within each slab occurs

uniformly. In Fig. 2, we show the assembly described

above where the ¯uxmeter, the heater and the N slabs

Fig. 1. Diagram of the sensor: �1 and �2 Ð heat fluxmeters, R1 and R2 Ð heaters, S Ð sample, B Ð bellow, D Ð fluxmeters and bellow

container, H Ð heat sink, and C Ð capillary.
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are represented by mediums 0, 1, 2, . . ., N � 1,

respectively. Due to symmetry we consider there is

no heat ¯ux through boundary N � 2.

The slabs transform sequentially from i � 2 at the

initial time to medium i � N � 1. In this model the

latent heat is equivalent to a positive or negative

internal dissipation. Thus, if we consider a time t1
high enough to re-establish the initial temperature

variation rate at every point of the assembly, we

can apply Eqs. (9) and (10) at the boundaries 1,

2,. . ., N � 1 of Fig. 2.Z tl

0

�iÿ�i�1

Ri

dtÿCi

2
vt1 � Qi

�
Z t1

0

�i�1ÿ�i�2

Ri�1

dt � Ci�1

2
vt1ÿQi�1

for i � 0; 1; . . . ;N with Q0 � Q1 � 0;

where Ci and Ri are the thermal capacity and thermal

resistance of each medium. Because of the symmetry

of the assembly, we assume that there is no heat flux

through the boundary N � 2,Z t1

0

�N�1ÿ�N�2

RN�1

dtÿCN�1

2
vt1 � QN�1 � 0:

From the above equation we obtain,Z t1

0

�0ÿ�1

R0

dt � C0

2
� C1 �

XN�1

i�2

Ci

" #
vt1

ÿ
XN�1

i�2

Qi � ÿ 1

�

Z t1

0

V dt; (11)

where we have used the Seebeck law V � n�(�1 ÿ �0)

at the fluxmeter and its sensitivity � � n�R0 which is

determined by calibration of Eq. (13). V is the e.m.f.

given by the fluxmeter, n the number of thermocouples

and � is the Seebeck coefficient.

We consider now two cases:

(a) When there is no phase transition,PN�1
i�2 Qi � 0 in Eq. (11) and

PN�1
i�2 Ci � CS is

the thermal capacity of the half of the sample. In

this case, each point of the assembly changes at the

same constant rate v. Since the relaxation time of

the fluxmeter is lower than 2 min and the rate v is

very small (v � 0.1 K hÿ1), we can consider a

small interval of time in such a way that we can

assume the thermal capacities and the e.m.f. V are

practically constant and consequently we deduce

V � ÿ�v�CF � CS�; (12)

where CF � C0

2
� C1. If V and CS are measured, �

and v are known and CF is evaluated as we will see

below. Eq. (12) must be fulfilled in the temperature

ranges where there is no contribution from the

latent heat.

(b) During the time interval 0±t1, the first-order

transition is produced. In this case
PN�1

i�2 Qi �
�m=2�Dh where m is the mass of the sample and

Dh is its latent heat.From Eq. (11)

1

�

Z t1

0

V dt � m

2
Dhÿ CF �

XN�1

i�2

Ci

 !
vt1: (13)

This equation shows that the total change of enthalpy

(measured by the integral of the DTA signal) is the

Fig. 2. Design of the device: (B) calorimeter block, (F) fluxmeter, (H) Heater and (S) sample which consist of N thin slabs where the phase

transition is produced uniformly. Rj, Cj where j � 0, 1,. . ., N � 1 are the thermal resistance and thermal capacity of each medium and �i is the

temperature at the boundaries where i � 1, 2,. . ., N � 1.
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change of enthalpy due to the latent heat plus that due

to thermal capacities. As we will see below this

equation allows us to determine the latent heat.

4. Experimental results

We have studied a pure KMnF3 crystal and a doped

KMn0.96Ca0.04F3 crystal, both 5 mm thick and with a

cross-section of 0.8 mm2. They were grown using the

Bridgman±Stockbarger technique.

The speci®c heat of both crystals was measured

using the method previously described [13]. The same

constant power was dissipated in both heaters (Fig. 1)

for 10 min to reach a steady state. Then the power was

cut off and the e.m.f. Vof the ¯uxmeters was integrated

for another period of 10 min. The integration of this

e.m.f. Vallows us to determine the thermal capacity of

the sample. Then, the power was switched on again

and the sequence was continuously repeated while the

temperature of the sample was cooled at a low con-

stant rate of 0.06 K hÿ1.

In Fig. 3, data of both crystals are represented

against temperature in a small range covering both

transitions. As with previous results [11], we can see

that the transition temperature Ttr shifts from 186 K

for a pure crystal to 200.5 K for the doped crystal and

the speci®c heat behaviour is very different in both

cases. A complete analysis of both sets of data is in

progress and we will report it in a forthcoming paper.

On the other hand, according to the method devel-

oped in the previous sections, the latent heat of the

sample can be determined using the equipment as a

very sensitive DTA device: the calorimeter block was

cooled and heated at the same constant rate used for

the measurement of the speci®c heat (0.06 K hÿ1) and

also at 0.16 K hÿ1. The e.m.f. V given by the ¯ux-

meters was continuously measured without heat dis-

sipation in any heater.

In Figs. 4 and 5, we represent the e.m.f. V versus

temperature T of the block for the doped and pure

crystal, respectively, obtained when cooling at

0.16 K hÿ1. With conventional DTA, the latent heat

is calculated by integrating V with respect to an

appropriate base line V0. Nevertheless, if we observe

both ®gures, V is different below and above the

Fig. 3. Specific heat of pure KMnF3 (*) and KMn1 ÿ xCaxF3 (^)

versus temperature near their transition points. We also represent

the specific heat data of pure KMnF3 (*) affected by the latent

heat.

Fig. 4. Measured V (*) and calculated Vc (D) versus temperature

of the block when cooling the KMn0.96Ca0.04F3 crystal at

0.16 K hÿ1. For clarity, only every 20th measured point of V is

shown.
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transition point and, mainly, it changes continuously

with temperature in such a way that we cannot know

when the transition begins or ends by considering only

these data. It is impossible to evaluate the baseline V0

only from the e.m.f. V data. We proceed as follows:

From speci®c heat data CS (represented in Fig. 3)

and e.m.f data V (represented in Figs. 4 and 5), we

consider the values of CS and V at two different

temperatures, where we assume there is no effect from

the latent heat, above and below the temperature Tm of

the maximum value of V (for the doped and pure

crystals we have considered, respectively, 5 and 1 K

above and below it). Using these data in Eq. (13) we

evaluate the term CF at those temperatures. In this

temperature range, there is no anomaly in the thermal

capacity of both ¯uxmeter and heater, thus, we can

assume a linear temperature dependence of CF in this

small temperature range.

Now, using this linear relation together with speci®c

heat data of the sample in that temperature range, Eq.

(12) allows us to calculate the e.m.f. Vc, that according

to the theory is due exclusively to the thermal capacity

behaviour. Comparing the measured V and the calcu-

lated Vc we deduce that in the temperature range where

both e.m.f. coincide there is no effect from latent heat.

The temperature dependence of Vc obtained for doped

crystals is also represented in Fig. 4 and that corre-

sponding to the pure crystal is represented in small

range of temperature in Fig. 6.

We can observe that for the doped crystal (Fig. 4) V

and Vc coincide over the entire temperature range, thus

showing that the change of enthalpy is due exclusively

to the speci®c heat anomaly. This con®rms that the

transition at 200 K in KMn0.96Ca0.04F3 crystal is

second-order [11]. The fact that V and Vc coincide

at temperatures outside of 5 K around the transition

point can be considered as a proof of the validity of the

method.

In Fig. 6, we represent Vobtained when cooling the

pure KMnF3 at v � ÿ 0.06 K hÿ1 and the calculated

Vc versus temperature of the block. We must point out

that, according to Eq. (12), V is proportional to v. If we

compare the ratio V/v for v � ÿ 0.16 K hÿ1 (Fig. 5)

and v � ÿ 0.06 K hÿ1 (Fig. 6), we obtain a good

agreement of both data (the discrepancy is less than

1%). This can be considered as another proof of the

validity of this procedure.

From Fig. 6, we can observe that V and Vc only

coincide for T < T1 � l85.80 K and T > T0 � 186.15 K.

As above, the variation of enthalpy outside the tem-

perature interval (T1, T0) is due exclusively to the

variation of the speci®c heat with temperature. In

the temperature range DT � T0 ÿ T1, V and Vc are

different thus showing the existence of a latent heat.

Fig. 5. Measured V (*) versus temperature of the block when

cooling the KMnF3 crystal at 0.16 K hÿ1. The greater thickness of

the curve close to the transition point is due to the higher reading

rate of V.

Fig. 6. Measured V (*) and calculated Vc (&) versus temperature

of the block when cooling the KMnF3 crystal at 0.06 K hÿ1. (T0,

T1) is the range where V and Vc do not coincide. The straight line

between V(T0) and V(T1) which is the appropriate baseline is also

shown.
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In other words, the temperature dependence of the

heat ¯ux observed for T < T1 and T > T0 is due exclu-

sively to the speci®c heat anomaly close to the transi-

tion point while data observed between T0 and T1 are

due to both, the speci®c heat and latent heat. The main

advantage of this method is the clear determination of

the block temperature range T1 ÿ T0 between which

the phase transition is produced with coexistence of

both phases. As T changes linearly with time, this

allows us to know the time interval t1, (Eq. (13)),

during which the phase transition is produced.

According to the usual procedure in DTA and DSC

techniques, we can consider the straight line

V(T0) ÿ V(T1) as the baseline to evaluate the latent

heat. Nevertheless, we are going to discuss several

points justifying the above procedure:

� The specific heat and the V data are represented

versus the block temperature T. Generally, the

temperature of the sample boundary Ts changes

at the same rate v as the block although with a

delay evaluated in 0.005 K (temperature differ-

ence between the ends of fluxmeters). Neverthe-

less, during the coexistence of both phases and due

to the latent heat effect, Ts does not change at the

same rate v and it can even remain practically

constant if the latent heat is high enough. In other

words, the temperature range where both phases

coexist is much smaller than T0 ÿ T1.

� In the coexistence interval T1 ÿ T0 � 0.35 K, spe-

cific heat data are affected by latent heat during the

measurement process, so they are higher than the

true ones. These data are shown as open circles in

Fig. 3. The filled circles represent the singular

behaviour of the specific heat near the phase

transition and they are outside of T1 ÿ T0 so they

are not affected by the latent heat.

� The change of phase is completed in about 2.5 h

when v � 0.16 K hÿ1 and 6 h when

v � 0.06 K hÿ1 while the relaxation time of the

fluxmeters is about 2 min.

When cooling, at block temperature T0 (t � 0) the

ferrophase begins to appear while at T1 (t � t1) we can

consider that the ®rst-order transition has ®nished.

Then C(T0) and C(T1) are the speci®c heats of satu-

rated paraphase and saturated ferrophase, respectively.

During the interval t1 there is coexistence of both

phases whose properties depend on the molar fraction

X. Consequently, the thermal capacity contribution to

heat ¯ux depends on X too. It is necessary to assume

that due to the very small temperature scanning rate

the change of phase is produced uniformly between

X � 0 and X � 1. In other case, we cannot evaluate the

baseline.

This assumption means that in Eq. (13)

�Ci � m[c(T0)X � c(T1)(1 ÿ X)], i.e., that �Ci

changes linearly with t between mc(T0) and mc(Tl)

and consequently the thermal capacity contribution in

Eq. (13) is the area of the trapezium formed by the

straight line between V(t � 0) or V(T0) and V(t � t1) or

V(T1), respectively.

The above assumption seems very reasonable and in

the case of other nonuniform kinetics, the error pro-

duced considering the straight line must be very small

because necessarily the baseline goes from V(T0) to

V(T1) by a line which must not be very different from

the straight line.

The crucial point of the procedure developed in this

paper is the determination of the temperature range

T0 ÿ T1 where the ®rst-order transition is produced

and DTA trace changes strongly with temperature due

to the speci®c heat anomaly.

In summary, the latent heat is determined by inte-

grating V respect to the straight line V(T0) ÿ V(Tl).

Using this procedure, the values obtained for cool-

ing and heating the sample at 0.06 and 0.16 K hÿ1 are

given in Table 1, showing very good reproducibility.

We must insist that in the doped crystal (Fig. 4) it

would have been impossible to determine the base line

if we had not used this procedure. In this case

T0 ÿ Tl � 0, so the transition is second-order.

5. Conclusions

The method we have developed allows us to dis-

criminate the changes of enthalpy due to the speci®c

Table 1

Latent heat of pure KMnF3 for several cooling and heating rates

v (K hÿ1) L (J gÿ1)

ÿ0.06 0.129

ÿ0.16 0.126

�0.06 0.129

�0.18 0.130
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heat variation with temperature from that due to the

latent heat. It determines clearly the interval where the

latent heat is produced and the baseline with respect to

which the DTA signal should be integrated.

The theory is quite general and it has been devel-

oped to show that the measurement does not depend

on the thermal properties of sample and sensor. It

includes also that the change of phase is produced

gradually and there is no dependence from tempera-

ture gradients in the sample.

The method presents the following main advan-

tages:

1. Due to the high number of thermocouples and the

great thermal stability of the calorimeter block,

the device has a high sensitivity and we can carry

out cooling and heating runs at extremely low

constant rates. This minimises the temperature

gradients in the sample.

2. The thermal capacity and the enthalpy changes

can be measured on the same sample, with the

same device and at similar thermal conditions.

The comparison of both sets of data allows us to

correctly determine the base line with respect to

which the integration of heat flux should be

carried out and, consequently, to evaluate the

latent heat of the sample. This advantage is very

important for studying samples close to a

tricritical point where the latent heat is small

and the specific heat changes greatly with the

temperature near the transition point. We must

point out that in this case the DTA signal changes

continuously and it is impossible to know the

temperature interval where the latent heat is

produced unless we use specific heat data.

3. Measurements carried out upon heating and

cooling the sample at two different temperature

variation rates show a very good reproducibility,

allowing us to evaluate the latent heat of pure

KMnF3 as 0.129 � 0.002 J gÿ1.

4. We can discriminate the specific heat data affected

by the latent heat during the measurement process.

5. With this equipment it is possible to apply a

uniaxial stress [16] or an electric field on the

sample to see its effect on the latent heat or on the

specific heat and to study its effects on the

transitions. Measurements of the latent heat of

KMnF3 under different small uniaxial pressures

are also in progress.

Measurements with KMnF3 samples with smaller

percentage of doping are now in progress with the goal

of studying the speci®c heat behaviour of ®rst- and

second-order transitions even closer to the tricritical

point.
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